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Non-stationary Signal Analysis using 
Wavelet Transform, Short-time Fourier 
Transform and Wigner-Ville 
Distribution

by Svend Gade,
Klaus Gram-Hansen* 

Abstract
While traditional spectral analysis techniques based on Fourier Transform or 
Digital Filtering provide a good description of stationary and pseudo-station-
ary signals, they face some limitations when analysing highly non-stationary 
signals. These limitations are overcome using Time-frequency analysis tech-
niques such as Wavelet Transform, Short-time Fourier Transform, and 
Wigner-Ville distribution. These techniques, which yield an optimum resolu-
tion in the time and frequency domain simultaneously, are described in this 
article and their advantages and benefits are illustrated through examples.

Résumé
Si les techniques d’analyse spectrale traditionnelles basée sur la Transformée 
de Fourier ou le filtrage numérique fournissent une bonne description des 
signaux stationnaires et pseudo- stationnaires, elles présentent cependant cer-
taines limites dans le cas de signaux non stationnaires. Ces problèmes peuvent 
être contournés à l’aide de méthodes d’analyse telles que la Transformée 
d’Ondelette, la Transformée de Fourier courte durée ou la Distribution Wigner-
Ville. Ces techniques, qui procurent une résolution optimale dans les domaines 
temporel et fréquentiel simultanément, sont décrites dans cet article, et leurs 
avantages illustrés par des exemples.

* Gram  &  Juhl 
Studsgade 10, baghuset, 8000 Århus C, Denmark
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Zusammenfassung
Traditionelle Methoden der Spektralanalyse auf der Basis von Fourier-Trans-
formation oder Digitalfiltern liefern zwar eine gute Beschreibung stationärer 
und pseudostationärer Signale, sind jedoch zur Analyse stark nichtstationä-
rer Signale nur bedingt geeignet. Mit Hilfe von Zeit-Frequenz-Analysemetho-
den wie Wavelet-Transformation, Kurzzeit-Fourier-Transformation und 
Wigner-Ville-Verteilung lassen sich diese Begrenzungen überwinden. Diese 
Techniken gewähren eine optimale Auflösung gleichzeitig im Zeit- und im Fre-
quenzbereich. Dieser Artikel beschreibt die Methoden und illustriert Vorzüge 
und Nutzen anhand von Beispielen.

General Introduction
A number of traditional analysis techniques can be used for the analysis of 
non-stationary signals and they can roughly be categorised as follows:

1) Divide the signal into quasi-stationary segments by proper selection of 
analysis window
a) Record the signal in a time buffer (or on disk)  and analyse after-

wards: Scan Analysis
b) Analyse on-line and store the spectra for later presentation and 

postprocessing: Multifunction measurements 
2) Analyse individual events in a cycle of a signal and average over several 

cycles: Gated measurements
3) Sample the signal according to its frequency variations: Order Tracking 

measurements
The introduction of Wavelet Transform (WT), Short Time Fourier Transform 

(STFT) and Wigner-Ville distribution (WVD) offers unique tools for non-sta-
tionary signal analysis. The procedure used is for the time being as described 
in 1a) above, although in the future faster analysis systems will certainly offer 
real-time WT and STFT processing. 

These techniques yield an optimum resolution in both time and frequency 
domain simultaneously. The general features, advantages and benefits are 
presented and discussed in this article. The Wavelet Transform is especially 
promising for acoustic work, since it offers constant percentage bandwidth 
(e.g., one third octaves) resolution.

Traditional spectral analysis techniques, based on Fourier Transform or 
Digital Filtering, provide a good description of stationary and pseudo-station-
ary signals. Unfortunately, these techniques face some limitations when the 
2



signals to be analysed are highly non-stationary (i.e., signals with time-vary-
ing spectral properties).

In such cases, the solution would be to deliver an instantaneous spectrum 
for each time index of the signal. The tools which attempt to do so are called 
Time-frequency analysis techniques.

Introduction to the Short-time Fourier Transform 
and Wavelet Transform 
The idea of the Short-time Fourier Transform, STFT, is to split a non-station-
ary signal into fractions within which stationary assumptions apply and to 
carry out a Fourier transform (FFT/DFT) on each of these fractions. The sig-
nal, s  (t) is split by means of a window, g  ( t –  b), where the index, b represents 
the time location of this window (and therefore the time location of the corre-
sponding spectrum). The series of spectra, each of them related to a time 
index, form a Time-frequency representation of the signal. See Fig.  1.

Note that the length (and the shape) of the window, and also its translation 
steps, are fixed: these choices have to be made before starting the analysis. 

The recently introduced Wavelet Transform (WT) is an alternative tool that 
deals with non-stationary signals. The analysis is carried out by means of a 
special analysing function ψ , called the basic wavelet. During the analysis this 

Fig.  1. The Short-time Fourier Transform (STFT). The Window, g(t-b) extracts spectral 
information from the signal, s(t), around time b by means of the Fourier Transform

941095e

s(t)

time

b

g(t - b)
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wavelet is translated in time (for selecting the part of the signal to be ana-
lysed), then dilated/expanded or contracted/compressed using a scale parame-
ter, a (in order to focus on a given range or number of oscillations). When the 
wavelet is expanded, it focuses on the signal components which oscillate slowly 
(i.e., low frequencies); when the wavelet is compressed, it observes the fast 
oscillations (i.e., high frequencies), like those contained in a discontinuity of a 
signal. See Fig.  2.

Due to this scaling process (compression-expansion of the wavelet), the WT 
leads to a time-scale decomposition.

As seen both STFT and WT are local transforms using an analysing (weight-
ing) function.

Short-time Fourier Transform 
The Fast Fourier Transform (FFT) was (re)introduced by Cooley and Tukey in 
1962, and has become the most important and widely used frequency analysis 
tool, Ref.[1]. Over the years there has been a tendency to develop  FFT-analys-
ers with increasing number of spectral lines, i.e., 400 lines, 800 lines and now-
adays 1600 – 6400 lines FFTs are on the market. The Brüel  &  Kjær 
Multichannel Analysis System Type 3550 analyzer even offers up to 25  600 
line Fourier Spectra.

Fig.  2. The Wavelet Transform (WT). The Wavelet, ψ , extracts time-scaled information 
from the signal, s(t), around the time b by means of inner products between the signal and 
scaled (parameter a) versions of the wavelet

941096e
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time
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Unfortunately, a large transform is not very suitable when dealing with con-
tinuous non-stationary signals, and as a consequence many modern FFT-ana-
lysers also offer small transform sizes, e.g. 50 lines and 100 lines.

STFT provides constant absolute bandwidth analysis, which is often pre-
ferred for vibration signals in order to identify harmonic components. STFT 
offers constant resolution in time as well as in the frequency domain, irrespec-
tive of the actual frequency. The STFT is defined as the Fourier Transform 
(using FFT) of a windowed time signal for various positions, b, of the window. 
See Eq. ( 1) and Fig.  1.

(1)

with

This can also be stated in terms of inner products (< >) between  the signal 
and the window, where s is the signal, g is the window, b is the time location 
parameter, f is frequency and t is time. The inner product between two time-
functions, f   ( t) and h ( t) is defined as the time integrated (from minus infinity to 
plus infinity) product between the two time signals, where the second signal 
has been complex conjungated. Time functions that are real can be converted 
into complex functions by using the Hilbert Transform. The result is a scalar :

* (2)

Actually, the use of STFT for Time-frequency analysis goes back to Gabor 
from his work about communications dated 1946, Ref.  [2]. In the fifties, the 
method became known as the “spectrogram” and found applications in speech 
analysis. The STFT is a true Time-frequency analysis tool.

Fig.3 shows the STFT (Transform size, N  =  1024) of the response signal of a 
gong excited by a hammer (the gong is damped by the user’s hand at 120  ms). 
The modal frequencies are clearly seen and damping properties can be 
extracted using the decay method. See Ref.  [15].

Sb s

∞–

∞+

∫ t( )g* t b–( )e j2πf t b–( )– dt=

s gb f,,〈 〉=

gb f, t( ) g t b–( )e j2πf t b–( )
=

f t( ) h t( ), >< f t( ) h•

∞–

∞+

∫= t( )dt
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Wavelet Transform 
It was not until 1982 that the Wavelet Transform, WT was introduced in sig-
nal analysis by the geophysicist J. Morlet, Ref.  [3]. Since then it has received 
great deal of attention, especially in mathematics. In the nineties we have 
also seen an increasing interest in the field of sound and vibration measure-
ments. 

The WT is defined from a basic wavelet, ψ , which is an analysing function 
located in both time and frequency. From the basic wavelet, a set of analysing 
functions is found by means of scalings (parameter a) and translations (param-
eter b).

Fig.  3. A Short-time Fourier Transform of a free vibration decay measurement of a gong. 
2Δ f  =  50  Hz, 2Δ t  =  6.3  ms. A slice cursor can be used to extract the decay curve of the reso-
nances for damping calculations
6



(3)

with

The inner product (< >) of the signal and a set of wavelets constitute the 
Wavelet Transform, where s is the signal, ψ is the wavelet, b is the time loca-

Fig.  4. Wavelet Transform of the impulse response from a loudspeaker. 2Δ f  =  0.23 × f c  , 
2 Δ t =  1.4/fc

S b a,( ) a 1 2⁄– s

∞–

∞+

∫ t( )ψ* t b–
a

-----------⎝ ⎠
⎛ ⎞ dt=

s ψb a,,〈 〉=

ψb a, t( ) a 1 2⁄– ψ t b–
a

----------⎝ ⎠
⎛ ⎞=
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tion parameter, and a is a scale parameter and t is time. So, in short, the wave-
let, ψ , extracts time-scaled information from the signal around time b by 
means of inner products between the signal and scaled (parameter a) versions 
of the wavelet.

The WT is seen to be defined as a time-scale (not Time-frequency) analysis 
tool. In order to interpret the WT as a Time-frequency method, a connection 
between scale, a, and frequency, f,  has to be established. This will be explained 
in detail in the following, but basically, by expanding the wavelet we extract 
low-frequency information and by compressing the wavelet we extract high-
frequency information.

Fig.4 shows a one-third octave WT of the impulse response from a two-way 
loudspeaker. Time-frequency analysis tools offer something unique: using a 
frequency slice cursor it is possible to view the Impulse Response Function  at 
various frequencies or as a function of frequency! Note the ringing at the cross-
over frequency between the two speakers around 2.5  kHz.

The Scaling Process for the Wavelet Transform
In order to make the connection between “scale” and “frequency” clear, we 
observe the wavelets in the frequency domain: the spectrum of the basic wave-
let corresponds to a bandpass filter centred around the frequency f0, where 
this centre frequency is the reciprocal of the time period of the wavelet and 
the bandwidth depends on how many time periods (oscillations) are included 
in the wavelet, i.e., the length of the wavelet. See Fig.  5.

Scaling in the time domain corresponds to a translation in the frequency 
domain: the spectrum of the dilated/expanded wavelet is translated towards 
low frequencies, while the contracted/compressed wavelet is translated 
towards high frequencies. The relation between “scale” and “frequency” 
becomes evident here.

Another important feature is that the expanded wavelet is more spread out 
in time, but exhibits a spectrum which is more concentrated around its centre-
frequency. The inverse applies to the compressed wavelet; its spectrum is more 
spread out around its centre frequency, but more concentrated in time. This is 
actually the consequence of the uncertainty principle, which is briefly dis-
cussed in the following and in more detail later.

The duration, Δ  t, of the wavelet in the time domain is proportional to the 
scaling factor, a, while the wavelet filter bandwidth, Δ  f, in the frequency 
domain is inversely proportional to the scaling factor a. As a consequence we 
have that the product between the time duration and filter bandwidth is con-
8



stant:  Δ t ⋅ Δ  f = constant, where the constant can take any value depending on 
the definitions of Δ  t and Δ  f .

If we define Δ  t as the RMS duration of the wavelet and Δ  f as the RMS band-
width of the wavelet filter bandwidth, we have that the product is always 
larger than or equal to 1/4 π, see Fig.6.

Fig.  5. The scaling process of the Wavelet Transform is implemented by means of the scal-
ing parameter, a.  WT offers analysis with constant percentage bandwidth

Fig.  6. Δ t is defined as the RMS duration of the time weighting function and Δ f is defined 
as the RMS bandwidth of the corresponding filter shape in the frequency domain
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This is called Heisenberg’s Uncertainty Relationship, which also applies to 
the STFT. 

The conclusion is that WT favours the time resolution, when analysing high- 
frequency components, and privileges the frequency resolution when dealing 
with low frequencies, compared to STFT, which offers constant resolution in 
both time and frequency. Thus, the WT leads to an analysis with constant per-
centage (or relative) bandwidth, while STFT provides constant bandwidth 
analysis.

Also, as shown later, the WT is especially relevant for acoustic applications 
since it provides constant percentage bandwidth analysis (e.g., 1/3 octaves), 
which correlates with the human perception of sounds.

The word wavelet comes from French and means “small wave”. A real-val-
ued wavelet is nothing but a time-windowed sine-wave, where the window 
function for example could be a Hanning Window, Blackmann-Harris Window, 
Gaussian Window, etc.

Analysing Functions  for STFT and WT
Frequency analysis is characterised in either the time domain by the impulse 
response function or in the frequency domain by the frequency response func-
tion of the analysing network/device/function.

Usually we visualise FFT weighting functions (e.g., Hanning, Rectangular, 
etc.) by their envelope. Using a filter analogy (see Appendix A in Ref.  [4]) it can 
be shown that the weighting function consists of a number of modulation fre-
quencies, as many as the number of frequency lines produced by the chosen 
FFT-transform (e.g., 400), see Fig. 7, which shows the envelope as well as two of 
the modulation frequencies. The time signal to be analysed is then projected 
onto (compared with) these modulation frequencies in order to obtain the fre-
quency contents of the time signal. Thus, the STFT is a true Time-frequency 
analysis tool, since all frequency components are extracted simultaneously in 
one calculation.

The basic wavelet contains only one modulation frequency, see Fig.  8. Thus 
the wavelet must be rescaled (i.e., compressed or expanded) in order to extract 
the frequency content of the signal at frequencies other than the frequency of 
the basic wavelet. Thus the WT is not a true Time-frequency tool but rather a 
time-scale tool. This has, on the other hand, no practical significance for the 
user of wavelet software packages, which normally and automatically make 
the rescaling for the user.
10



As a conclusion, the STFT always uses an analysing function of fixed time 
length irrespective of frequency, while the WT uses an analysing function with 
a length, which is frequency dependent. WT analyses the same number of fre-
quency oscillations irrespective of frequency, while the number of frequency 
oscillations that are analysed using STFT are frequency dependent.

Fig.  7. The analysis window for STFT contains a number of modulation frequencies. The 
length of the window is fixed

Fig.  8. The basic wavelet contains a fixed number ( chosen by the user) of oscillations. The 
wavelet is then compressed/expanded in order to extract higher and lower frequency con-
tents respectively
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Heisenberg’s Uncertainty Relationship
Two questions often raised in signal analysis are: “When did a given phenom-
enon take place?” and  “At which frequency does the phenomenon show?”. To 
answer the first question it is well known that a measurement system with 
large bandwidth is required for high accuracy. Conversely, for the second 
question, narrow bandwidth is required. Consequently it is impossible to 
carry out a measurement with answers to both questions with an arbitrarily 
high precision in both frequency and time. This is the so-called uncer-
tainty principle.

Most “people” are familiar with the uncertainty relationship as the Band-
width × Time product (BT product), which must be larger than unity for the 
analysis results to be valid.

For FFT analysis a very general and practical version of the BT product is 
Δ  f   ⋅   T = 1, where Δ  f is the FFT line spacing and T is the record length. This 
relationship is independent of choice of weighting function. This product is 
sometimes called the Degree of Freedom (DOF) and is also very useful for cal-
culation of the statistical accuracy when averaging random signals using sta-
tistically independent records (i.e., using no overlap or maybe 50% overlap). 
See Appendix D in Ref.  [4].

Fig.  9. Heisenberg’s ellipses for STFT. Y-axis is both a frequency 
and a frequency resolution axis
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A much more fundamental version of the uncertainty relationship uses the 
second order moments of the weighting function, g  (t)  around a suitable point 
as the time duration (also called RMS duration), and the second order moment 
of the corresponding frequency filter shape around a suitable point as the 
bandwidth (also called the RMS bandwidth). See Eq.  (4) and Fig.  6.

(4)

The normalisation factor, Eg is the energy of the window function. It can be 
shown that this product can never be smaller than 1/4π. Ref.  [5]. Note that in 
all examples (except for WVD, where Δ  t is the sampling interval), the time 
duration is indicated as twice the RMS duration and the bandwidth as twice 
the RMS bandwidth, which is more relevant from the user’s point of view, 
when dealing with bandpass filtering.

Fig.  10. Heisenberg’s ellipses for WT. Y-axis is both a frequency 
and a frequency resolution axis
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The optimum choice of weighting function is a Gaussian shape, both for the 
STFT and the WT. In this case we actually achieve an uncertainty product 
which equals 1/4π.

This can be visualised by showing the Heisenberg’s ellipses,  where the area 
of all ellipses is the same. For the STFT the ellipses have constant shapes, 
while for the WT the length of the frequency width is proportional to the fre-
quency at which it is located.

Thus the STFT offers constant time and frequency resolution, while the WT 
offers good frequency resolution at low frequency and good time resolution at 
high frequencies. See Figs.  9 and 10.

Fig.  11. Speech analysis using STFT. Sentence (French), “Dès que le tambour bat...”, 
2Δ f  =  99  Hz, 2Δ t  =  3.2  ms
14



Note that the y-axis is linear and is both a Frequency Axis and a Frequency 
Resolution Axis in Figs.  9 and 10. The projection of the height of the ellipses 
onto the y-axis indicates the resolution, Δ  f. The vertical position of the ellipses 
indicates the actual frequency as well. The x-axis is only a Time Resolution 
Axis, i.e., the projection of the width of the ellipses onto the x-axis just indi-
cates the resolution, Δ t. Thus the horizontal positions of the ellipses are arbi-
trarily chosen in order to spread out and separate the ellipses.

The widely used Hanning Weighting function for FFT-analysis yields a 
Δ t · Δ f product that only differs from the above-mentioned limit by 2%. 
Ref.  [6].

In order to clarify the differences between the two Time-frequency tech-
niques, analyses of  the same sentence (French), “Dès que le tambour bat...” 
have been performed using STFT ( N  =  256) in Fig.  11 and 1/ 6  -octave WT in 

Fig.  12. Speech analysis using WT. Sentence (French), “Dès que le tambour bat...”, 
2Δ  f  =  0.12 × fc  , 2Δ t  =  2.8/fc
15



Fig.  12. A linear frequency axis is chosen in Fig.12 for easier comparison with 
Fig.  11. 

Note how the WT separates the first three harmonics better than the STFT. 
Also note how the WT reveals the high-frequency oscillations in the time sig-
nal more clearly than the STFT shown in Fig.  11. Thus both transients and 
harmonic components are depicted in the same picture. The resolution proper-
ties of the WT turn out to be well-suited for analysis of speech signals. 

In order to obtain optimum resolution in both the time and frequency 
domains a multi-analysis is often required. In Fig.  13 upper, an STFT of an 
explosion has been performed using a small transform size ( N  =  64) in order to 
identify when the phenomena took place (62.5  ms and 137  ms), while the larger 

Fig.  13. Upper. An explosion analyzed with a small transform (STFT, N  =  64) in order to 
obtain good time resolution, 2Δ  t =  3.16  ms 
Lower. An explosion analyzed with a large transform (STFT, N  =  512) in order to obtain 
good frequency resolution, 2  Δ  f  = 12.6  Hz
16



transform size ( N  =  512) used in Fig.13 lower indicates the frequency contents 
more clearly. Notice how the increased resolution in one domain produces an 
increased smearing in the other domain, as a consequence of the uncertainty 
principle.

Wavelet Filters
In acoustics there is a long tradition for using 1/1-octave and 1/3-octave analy-
sis, i.e., constant percentage bandwidth analysis by means of analogue and 
digital filters.

Since WT also offers constant percentage bandwidth analysis, it is quite nat-
ural to choose resolutions such as 1/1, 1/3, 1/6, 1/12 octaves. See Fig.  14.

On the other hand, the wavelet “filters” are seen to be smoother, Fig.  15, and 
more overlapping than the traditional (1/3-octave) filters. So in this respect the 
filter “bank” view of the WT is not adequate. The characteristics of the trans-
form are only fully understood if the simultaneous time location properties are 
taken into account. Traditional filter banks are designed under assumptions of 
stationarity for which reason their properties in the frequency domain are 

Fig.  14. Standardized1/3-octave filter bank, linear frequency
17



emphasised/optimised. Wavelets, on the other hand, are designed to have good 
properties simultaneously in time and frequency.

The chosen shape of the wavelets used in Brüel  &  Kjær software packages 
(Ref.  [7]) is Gaussian in both time and frequency domain. This is due to the fact 
that the spectrum of a Gaussian time signal is also a Gaussian function. The 
advantages of wavelet filters compared to traditional filters are summarized in 
the following:

1) First of all there is no “ringing” of the wavelet filters compared to tradi-
tional analog/digital filters since the filter shapes and the envelope of 
the impulse response functions are Gaussian. The impulse response of a 
standardised filter (Ref.  [8], pp 193 & 200) shows the ringing, which, for 
example, causes distortion for measurements of short reverberation 
times. In order to ensure no distortion on such measurement, the prod-
uct between the filter Bandwidth, B, and the Reverberation Time, T60
must be greater than 16, BT60   > 16. For damping measurements this 
means, for example, that the fraction of critical damping, ς of a struc-
ture must be less than 1.7%, when using 1/3 octaves (23%) analysis. 
Thus, in general, the bandwidth of a measured resonance must be 14 
times narrower than the bandwidth of the corresponding bandpass fil-
ter, see Ref. [9], a limitation that the Wavelet filters do not have. Fig.  16 

Fig.  15. 1/3-octave Wavelet “filter bank”, linear frequency
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shows the WT (1/3-octave) of a reverberation time measurement in a 
room. In Fig.  17 a backwards integration has been applied in order to 
smooth the decay for calculation of the reverberation time. Ref.  [16].

2) For wavelet filters there is no RMS detector time-constant limitation, 
since envelope detection is used. For reverberation time measurements 
using traditional techniques, the reverberation time of the test object 
must be longer than the reverberation time of the detector, or expressed 
in other words, the averaging time, TA of the detector must fulfil 
7  TA <   T60. (Ref.  [8], section 3.2.)

3) Using  the wavelets, as implemented by Brüel  &  Kjær, there is no fre-
quency-dependent delay in the analysis as found using traditional fil-
ters. This delay,  Tdelay ≅ B −1, is inversely proportional to the filter 

Fig.  16. Reverberation time measurement. Wavelet analysis of a handclap in a room. 
2Δ  f  =  0.23 × fc  , 2Δ t = 1.4/fc
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bandwidth, B, and thus very large at low frequencies and very short at 
high frequencies. (Ref.  [8], section 5.2.1.)

4) Wavelet analysis offers optimum Time-frequency resolution, only lim-
ited by the Heisenberg’s Uncertainty Principle, BT  <  1/4π as mentioned 
earlier.

5) Wavelet analysis offers a true Time-frequency energy distribution, 
which is not the case when using standardized filters. Imagine the case 
where we analyze a sine-wave whose frequency is located at the cross-
over point between two ajacent 6-pole 1/3-octave standardized filters. 
Both these filters will display a level which is underestimated by 3.9  dB, 
which means that the overall sum is underestimated by 0.9  dB. Thus 

Fig.  17. Backwards integration applied on the WT shown in Fig. 16. A slice cursor can be 
used to extract the decay curve for reverberation time calculations
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Digital (or Analog) Filtering does not fulfil Parseval’s Theorem, which 
states that the energy in the frequency spectrum equals the energy in 
the time domain signal. Refs.  [5, 6, 8, 10].

The Wigner-Ville Distribution (WVD)
The Wigner-Ville Distribution (WVD) is a global transform and is regarded as 
being the most fundamental of all Time-frequency distributions.

In 1932, E. Wigner (Ref.  [11]) proposed the Wigner distribution in the con-
text of quantum mechanics and in 1948, J. Ville (Ref.  [12]) introduced the dis-
tribution in signal analysis. But it was not until 1980 that the WVD really 
started to be applied in signal analysis, for instance in analysis of impulse 
responses of loudspeakers.

Thus the WVD is an analysis technique that also provides an energy distri-
bution of the signal in both time and frequency domain. The main characteris-
tic of this transform is that it does not place any restriction on the simulta-
neous resolution in time and in frequency. In other words, the WVD is not lim-
ited by the uncertainty relationship, due to the fact that it is a more general 
transform, not using an analysing function. See Eq.  (5).

(5)

Note that the WVD is a kind of combined Fourier Transform  and autocorre-
lation calculation, i.e., autospectrum estimate as a function of time or autocor-
relation estimate as function of frequency.

Unfortunately, this transform leads to the emergence of negative energy lev-
els and cross terms, which are irrelevant from a physical point of view. In 
Fig.18 a stationary signal containing a 1  kHz and a 2  kHz sine-wave has been 
analyzed using the Pseudo WVD ( N  =  128). A 1.5  kHz cross term, which oscil-
lates between positive and negative energy values is clearly seen.

Another problem lies in the signal multiplication (squaring). The sampling 
frequency must be at least 4 times higher than the maximum frequency in the 
signal in order to avoid spectrum aliasing. This is a similar problem to the cir-
cular folding that arises when measuring correlation functions, which is 
avoided using zero-padding, where half of the record is set to zero amplitude. 
One way of handling this problem is to use the complex analytic signal of s  (t), 

Ws τ f,( ) s t τ 2⁄+( ) s* t τ 2⁄–( )e j2πft– dt

∞–

∞+

∫=
21



where the imaginary part is calculated via the Hilbert Transform. The use of 
Hilbert Transform eliminates “negative” frequencies and therefore also this 
aliasing phenomenon, assuming a traditional antialiasing filter has been 
applied to the original time signal. See Ref.  [13]. 

Therefore the analysis results obtained with WVD can sometimes be diffi-
cult to interpret. The gain in resolution (compared to STFT and WT) is com-
pensated by the loss of clarity of the Time-frequency energy distribution 
diagram.

Practical calculation of the WVD requires that the signal, s  (t) has a finite 
duration. To ensure this the Pseudo Wigner-Ville Distribution, PWVD, is intro-
duced, which is defined as the WVD of a windowed time signal. The time reso-
lution for the PWVD is the sampling interval, while the frequency resolution 
obtained is directly related to the length of the chosen window.

Fig.  18. WVD of a dual sinewave. 2Δ f  =  100 Hz, Δ t  =  0.12  ms (sampling interval)
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In many connections, it is also useful to “smooth” the  WVD (SVWD) along 
both time and/or frequency axis in order to get rid of (or at least minimize) the 
drawbacks mentioned above. Very often the smoothing kernel is chosen as a 
two-dimensional Gaussian function. It can be shown that it is possible to 
obtain the STFT or WT by a proper choice of smoothing kernel, Ref.  [6]. In the 
Brüel  &  Kjær software, the smoothing is offered in both time and frequency 
domain. Frequency smoothing is chosen as a pre-processing parameter as 
mentioned above and time smoothing is chosen as a postprocessing  facility.

The WVD is therefore a more general Time-frequency analysis technique 
than the STFT and WT. Unfortunately the amount of calculation involved is 
significantly more than in the case of the STFT or WT, where efficient algo-
rithms exist.

Displaying the Results of Time-frequency Analysis 
Techniques
The most common way to display the results of a Time-frequency analysis 
consists of plotting a series of spectra (multispectrum), where each of these 
spectra is related to a time index. This three-dimensional display is known as 
a “Waterfall”.

On the other hand, a contour (spectrogram) display has been chosen for rep-
resenting the results of the STFT, WT and WVD calculations shown in this 
article, since the waterfall representation gets confusing as soon as the 
number of curves to be plotted becomes large. Contour presentation is less sen-
sitive to this problem and is therefore certainly the most convenient display for 
the user, although some time is needed to get used to this representation and 
to interpret the results correctly and rapidly.

Notice that the time axis is horizontal and the frequency axis is vertical as 
this is the convention for musical scores.

Time-frequency Analysis Applications
The potential applications of these Time-frequency analysis techniques in 
sound and vibration can be divided into three fields: electroacoustics, acous-
tics and vibration.

It may as well be separated into two categories of signals: non-stationary 
and transient signals, and response of systems (structures, transducers, 
rooms, etc.): gearbox analysis, run-up/coast-down analysis, speech analysis, 
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noise source identification, fault detection in machines, transient analysis, 
analysis of loudspeaker systems and headphones, analysis of listening rooms, 
music signal analysis, etc. Therefore, these applications actually cover a very 
wide range of physical signals.

 As a final example, the Wavelet Transform is applied in machine diagnos-
tics on a diesel engine. Fig.  19 shows the WT of an accelerometer signal of one 
complete cycle from a diesel engine in good condition, while Fig.  20 shows the 
WT of a similar diesel engine with faulty operation, where one of the valves 
was loose (1/3-octave analysis has been used). A traditional frequency analysis 
showed a (small) broadband increase in level around 4  kHz, while the WT 
clearly indicates precisely where in the machine cycle the fault is located.

Fig.  19. WT of a diesel engine in good condition. 2Δ f  =  0.23 × fc  ,  2Δ t  =  1.4/fc
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Instrumentation
The analysis has been performed using the Brüel  &  Kjær PC-software pack-
age Non-stationary Signal Analysis Software WT  9362, which accepts input of 
time data from the following Brüel  &  Kjær Analyzers: Real-time Frequency 
Analyzers Types 2123/2133, Multichannel Analysis System Type 2035/3550, 
Audio Analyzer Type 2012, Portable Signal Analyzer Type 2148 (2144/7669) 
and Multi-analyzer Type 3560 (PULSE). See Fig.  21.

Except for PULSE, from which data is accepted in ASCII format (PULSE 
ver.1.0 and 2.0), time data is transferred to the computer using either the 
IEEE bus, in which case the GPIB card has to be installed in the PC, or via 
the 3 1/2″ floppy disk.

Type 2133 has been used for the measurements shown in Figs .3, 11, 12, 16 
and 17. Type 2032 has been used for the measurements shown in Figs. 4, 19 

Fig.  20. WT of a diesel engine with a loose valve. 2Δ  f  =  0.23 × fc  , 2Δ t  =  1.4/fc
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and 20. Type 2035 has been used for the mesurement shown in Figs. 13 and 18. 
The data has been exported/imported via MS Windows programs in Photo 
Deluxe, U-Lead System, Inc. and HiJaak PRO, Inset System, which converts 
the electronic picture format into TIFF (Tagged Image File Format), as used in 

Fig.  21. Data import to the “Non-stationary Signal Analysis Software” is possible from 
most Brüel  &  Kjær Analyzers. Export of data can be done using file-formatting programs 
such as HiJaak Pro which runs under MS-Windows
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this article. These programs also allow colours to be changed. In this case the 
grey background colour has been changed to white, although some choices of 
colour are possible in the WT  9362 program.

Conclusion
In this article, signal analysis tools providing simultaneous time and fre-
quency energy presentation are described and compared. The “well-known” 
approaches, the Short-time Fourier Transform and the Wigner-Ville Distribu-
tion as well as the “recently” introduced Wavelet Transform were discussed. 
For additional reading see, for example, Refs.  [6, 14, 17].

The STFT, which represents the concept of constant absolute bandwidth 
analysis, is a well-established and well-known tehnique.

Concerning the WT, it is shown to be superior to conventional methods for 
Time-frequency analysis with constant relative bandwidth, such as filter 
banks. In addition, fast algorithms of the WT exist. Furthermore, the ultimate 
resolution approaching the Heisenberg limit is obtained with Gaussian ana-
lyzing functions.

There is a broad consensus that the WVD holds the position as the most gen-
eral Time-frequency approach. The physically irrelevant negative levels are, 
on the other hand due, to a violation of the uncertainty principle and indicate 
an ambiguous interpretation of the WVD, which also requires much more com-
putational power than STFT and WT.

A general conclusion is that a priori knowledge of a signal is extremely 
important, especially in Time-frequency analysis. Various Time-frequency 
energy representations of a signal are equally valid and may indeed lead to 
very different interpretations. Only a priori knowledge makes it possible to 
choose the most relevant representation among the many possibilities.  
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